OSFP MSA Targets 400Gbps Optical Transceiver Module

2017-08-18
The public launch of efforts to develop the Octal Small Form Factor Pluggable (OSFP) optical transceiver module for 400-Gbps applications has arrived. The multisource agreement (MSA) development group, led by Arista Networks, includes 49 members.
 
"It is rare to see so much industry support behind a new optics module form factor," said Andreas Bechtolsheim, chief development officer at Arista Networks. "We believe that the OSFP ecosystem will be a key element in enabling a successful market transition from 100 Gbps Ethernet to 400 Gbps and beyond."
 OSFP MSA Targets 400Gbps Optical Transceiver Module
In addition to Arista, OSFP MSA participants include Acacia Communications, Accelink, ADVA Optical Networking, Amphenol, AppliedMicro, Applied Optoelectronics, Barefoot Networks, Broadcom, Cavium, ClariPhy Communications, ColorChip, Coriant, Corning, Dell EMC, Finisar, Foxconn Interconnect Technology, Fujitsu Optical Components, Google, Hewlett Packard Enterprise, Hitachi Cable Systems, Huawei Technologies, Infinera, Innolight, Innovium, Inphi, Intel, Ixia, Juniper Networks, Kaiam, Lorom, Lumentum, Luxtera, MACOM, Marvell, Mellanox Technologies, Molex, MultiLane, NeoPhotonics, NEL America, Nokia, Oclaro, PHY-SI, SAE, Senko, Source Photonics, Sumitomo Electric Industries, TE Connectivity, and Yamaichi Electronics.

What is the OSFP (Octal Small Form Factor Pluggable)?
 
The OSFP is a new pluggable form factor with eight high speed electrical lanes that will initially support 400 Gbps (8x50G). It is slightly wider and deeper than the QSFP but it still supports 32 OSFP ports per 1U front panel, enabling 12.8 Tbps per 1U.
 
400G Optics require more power than 100G Optics and many of them will not fit into the existing QSFP form factor. Depending on the specific 400G optics technology the initial power projections range from 7.5 Watt to 15 Watt.
 
The OSFP MSA will seek to develop specifications for an optical transceiver capable of supporting transmission rates up to 400 Gbps (8x50G initially) in a size that will enable 32 ports per 1RU line card. The modules will support reaches from the data center to metro networks and, according to the MSA members, will be "slightly wider and deeper" than a QSFP module.
 
The OSFP is able to meet the projected thermal requirements for 800 Gbps optics when those systems and optics become available in the future.
 
What about Backwards Compatibility with QSFP?

400G Optics require more power than 100G Optics and many of them will not fit into the existing QSFP form factor. Depending on the specific 400G optics technology the initial power projections range from 7.5 Watt to 15 Watt.
 
The OSFP is able to meet the projected thermal requirements for 800 Gbps optics when those systems and optics become available in the future.
 
What about Forwards Compatibility?

The OSFP is able to meet the projected thermal requirements for 800 Gbps optics when those systems and optics become available in the future.
 
The small size and comparatively low power consumption of the OSFP aims to meet the requirements of member Google and similar large-scale data center operators. The OSFP is the third MSA aimed at creating a 400 Gigabit Ethernet optical transceiver form factor.

SFP+ module,SFP+ transceiver,bidi sfp,XFP module,XFP transceiver Which is good? First choice Fiberland!Thanks for your concern, to learn more about Fiberland, please enter Fiberland website: http://www.fiberlandtec.com/
RECENT BLOG POST
  • 01
    2019-10
    With the continuous development of 5G communication technology, 100G modules are gradually becoming popular. We know that there are many kinds of packages for 100G optical modules. From 2000 to now, the optical module package types have been rapidly developed. Its main package types are: GBIC, SFP, XENPAK, SNAP12, X2, XFP, SFP+, QSFP/QSFP+, CFP, CXP. In the fast-developing network era, some 100G optical modules avoid the risk of being eliminated, and upgraded and revised with the wave of the Internet, such as 100G CFP optical modules.
  • 01
    2019-10
    1. What is the CWDM SFP? The CWDM optical module is an optical module using CWDM technology to implement the connection between the existing network device and the CWDM multiplexer/demultiplexer. When used with a CWDM multiplexer/demultiplexer, CWDM optical modules can increase network capacity by transmitting multiple data channels with separate optical wavelengths (1270 nm to 1610 nm) on the same single fiber.
  • 01
    2019-10
    AOC is the abbreviation of Active Optical Cables, which is called Active Optical Cables in Chinese. AOC active optical is to encapsulate two optical modules and cable together. Because the medium of transmission in the middle is optical cable, AOC optical module, which contains laser devices, has a higher price for DAC. However, its optical aperture is not exposed, it has high reliability, and its working distance can be customized for a long distance of less than 100 meters.
  • 01
    2019-10
    Dense Wavelength Division Multiplexing (DWDM) technology is capable of transmitting data in an optical fiber using bit wavelength parallel transmission or string line transmission using the wavelength of the laser.It is widely used in different fields of communication networks, including long-distance backbone networks, metropolitan area networks (MANs), residential access networks, and local area networks (LANs).The DWDM optical module is the optical module that uses this technology, so the DWDM optical module has high bandwidth and long-distance transmission characteristics.